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A general method for the preparation of various 3,4-fused-spiro[furan-5(5H),4 -piperidin]-2-one with
high yield is reported. The formation of spiro[furanone-piperidine] structure was achieved by a Suzuki
coupling, followed by an iodolactonization reaction.

� 2009 Elsevier Ltd. All rights reserved.
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Spiro piperidines are commonly used structure motifs in drug
discoveries. One successful example is 1-(methylsulfonyl)-
spiro[indoline-3,40-piperidine] (1) employed by Merck scientists
in the discovery of MK-0677 which is one of the most potent pep-
tidomimetic growth hormone secretagogues and entered Phase III
clinical trials.1 Recently we reported the synthesis of a close ana-
logue to 1, (2-methylsulfonyl)-2,3-dihydro-1H-spiro[isoquinoline-
4,40-piperidine] 2, as an interesting intermediate for a medicinal
chemistry program.2

We have had continuing interest in spiro piperidines, which led to
the study of 3,4-pyridine fused-spiro[furan-5(5H),40-piperidin]-2-
one 3, especially the structure 4, 3-chloro-2-methyl-5H-spiro
[furo[3,4-b]pyridine-7,40-piperidin]-5-one (Fig. 1). We discovered
4 as an important common intermediate for the SAR study in one
of our medicinal chemistry programs. Thus effort was invested in
looking for a general synthesis of 3,4-fused-spiro[furan-5(5H),40-
piperidin]-2-one analogues.

The synthesis of 3,4-fused-spiro[furan-5(5H),40-piperidin]-2-
one was reported with benzo, pyridino, and thiopheno as fused
rings.3 Halogen-metal exchange or direct lithiation generates ortho
carboxylate dianion, which is then added to N-protected 4-piperid-
inone, followed by acidic treatment to form the spiro lactone. This
excellent chemistry provides one-pot reaction to form the 3,4-
fused-spiro[furan-5(5H),40-piperidin]-2-one in moderate yield.
However, this method is limited to simple systems with no aromatic
substitutions. Here we are reporting a general synthetic route we de-
rived from the synthesis of compound 4, utilizing a Suzuki coupling,
followed by an iodolactonization reaction to form the spiro struc-
ture. The synthetic route for compound 4 is shown in Scheme 1.
ll rights reserved.
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Methyl 5-chloro-6-methyl-2-triflatepyridine-3-carboxylate 5,4

was coupled with tert-butyl 4-(4,4,5,5-tetramethyl-1,2,3-dioxa-
borolan-2-yl)-3,6-dihydropyridine-1(2H)-carboxylate 65 via a pal-
ladium-mediated high yield Suzuki cross-coupling to form 7. Then
the ester in 7 was hydrolyzed to acid to afford compound 8 in an
excellent yield. An iodine initialized lactonization6 under a basic
condition in acetonitrile and water generated the spiro lactone
structure 9. Finally the iodo was removed by a radical type reduction
using tributyltin hydride to provide 3-chloro-2-methyl-5H-spiro
[furo[3,4-b]pyridine-7,40-piperidin]-5-one 4 in 70% yield over four
steps from compound 5.7

The same synthetic route as for compound 4 was applied to
different aromatic ortho halide or triflate carboxylic ester, or nitrile
substrates for the preparation of different 3,4-fused-spiro[furan-
5(5H),40-piperidin]-2-ones. The reaction conditions for each step
P = H or Boc
3 4

Figure 1.



Table 1
3,4-Fused-spiro[furan-5(5H),40-piperidin]-2-ones prepared from their corresponding
aromatic substrates
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a Overall yields are for four steps from substrates to spiro piperidines. Each
product was prepared at the scale of 400 mg to multi grams.
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Scheme 2. Synthesis of 20. Reagents and conditions: (a) Tf2O, NaH, Et2O, 0 �C, 97%;
(b) Pd(dppf), Na2CO3, DMF/H2O, 90 �C, 3 h, 94%; (c) NaOH(5 N)/MeOH, then HCl; (d)
I2, KI, NaHCO3, H2O/CH3CN, 48% two steps; (d) Bu3SnH, AIBN, toluene, 80 �C, 85%.
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Scheme 1. Synthesis of 4. Reagents and conditions: (a) Pd(dppf), Na2CO3, DMF/H2O,
100 �C, microwave, 89%; (b) NaOH (5 N)/MeOH, then HCl, 95%; (c) I2, KI, NaHCO3,
H2O/CH3CN (5/1), 85%; (d) Bu3SnH, AIBN, toluene, 80 �C, 97%.
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of all compounds were exactly the same as those for 4, and the
overall yields were from moderate to good. The yields varied sig-
nificantly on the step of iodolactonization which was sensitive to
the substrates.7 All final products as white solids were purified
by chromatography and were characterized by LC–MS and 1H
NMR.8 Table 1 lists the different commercially available or readily
prepared substrates and the corresponding spiro piperidine prod-
ucts. The synthesis can tolerate different heterocyclic rings with
various substitutions. In addition, we have applied this synthetic
route to prepare a spiro[furan-5(5H)-40-piperidin]-3-one with an
olefinic fused ring such as compound 20 (Scheme 2). Ethyl 2-oxo-
cyclopentanecarboxylate 16 was converted to enol triflate 17 when
treated by triflic anhydride in ether with sodium hydride as a base.
Suzuki coupling of 17 with 6 catalyzed by Pd(dppf) generated
product 18. Hydrolysis of ester in 18 followed by iodo lactonization
converted it to a spiro compound 19. Finally, the iodo was reduced
by tributyltin hydride under radical condition to form the spiro
compound 208 with an unsaturated fused ring.

Effort to expand the furan ring to a six-membered lactone was not
successful. Homologation of acid 8 led to an aryl acetic acid. However
to our disappointment, iodolactonization on this homologated acid
to form the six-membered lactone did not work. Presumably the for-
mation of a six-membered lactone is much slower than the forma-
tion of a five-membered ring, which led to a complicated mixture
of iodination products unable to be characterized.

In summary, we have demonstrated that the biologically inter-
esting 3,4-fused-spiro[furan-5(5H),40-piperidin]-2-one can be pre-
pared from aromatic ortho halide or triflate carboxylic ester, or
nitrile via a Suzuki coupling and an iodolactonization as key steps.
This methodology allows for a variety of aromatic or olefinic fused
rings with various substitutions. The piperidine nitrogen and the
lactone functional groups in the spiro structures can be used as
handles for further derivatizations for the preparation of biologi-
cally active molecules.
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